\( % Arcus cosine. \def\acos{\cos^{-1}} % Vector projection. \def\projection#1#2{{proj_{#1}\left(#2\right)}} % Vector rejection. \def\rejection#1#2{{rej_{#1}\left(#2\right)}} % Norm. \def\norm#1{{\left\|#1\right\|}} % Cross product. \def\cross#1#2{\mathit{cross}\left(#1,#2\right)} % Dot product. \def\dot#1#2{{#1 \cdot #2}} % Magnitude. \def\mag#1{{\left|#1\right}} \def\group#1{\left(#1\right)}} \def\sbgrp#1{\left\{#1\right\}} \)

Definition of an axis angle

An axis angle \((\hat{r},\alpha)\) in \(\mathbb{R}^3\) is defined by a unit axis vector \(\hat{r} \in \mathbb{R}^3\) and an angle in degrees \(\alpha\). Such an axis angle denotes a rotation by an angle \(\alpha\) around the axis \(\hat{r}\).